

汽车级应用的磁性角度传感器芯片

特性和优势

- 符合ISO26262功能安全ASIL Ready (单路SOP-8封装可满足ASIL-B等级,双路TSSOP-16封装可满足ASIL-D等级);
- 支持模拟输出(Analog)、脉宽调制输出(PWM) 或位置开关输出(SWO)可选;
- 模拟输出、PWM/SENT输出支持可编程的输出传输 曲线(任意8点或者范围可选的16段等分曲线);
- 增量ABZ输出支持用户可编程的1~4,096 脉冲/圈任意分辨率;
- UVW 输出支持用户可编程的1~16 对极/圈分辨率;
- 支持符合SAE J2716标准的SENT输出;
- 支持输出单线(OWI)接口或者3线SPI接口进行读写和编程操作;
- 每颗芯片唯一可追溯的48比特芯片ID号;
- 差分霍尔感应原理,抗杂散磁场干扰,MFI测试通过 4000 A/M;
- SOP-8和TSSOP-16封装均符合RoHS要求;

应用

- 电子节气门、EGR阀位置传感器
- 油门踏板位置传感器
- 方向盘、EPS助力转向角度传感器
- 车身高度位置传感器
- 转向、刹车等助力电机位置反馈角度传感器

SOP-8

TSSOP-16

概述

MT6511是麦歌恩微电子推出的新一代基于差分水平霍尔磁感应原理的角度位置传感器芯片。该芯片内部包含了两对互成90°放置的水平霍尔阵列,能够感应垂直于芯片表面的磁场变化,并随着磁场角度(α)的转动输出两路正弦、余弦的电压信号,再经后续专用电路的放大、补偿和计算后得到角度值(α)。

MT6511的OUT输出管脚提供可编程选择的模拟输出、PWM和SENT输出。并且这三种输出,都可以对输出曲线进行任意8点或者17点(16段)等分的编程。

MT6511还可以输出增量ABZ信号,增量输出AB的分辨率从1~4096脉冲/圈(16,384步/圈)任意整数可编程;另外还可以配置输出UVW信号,UVW分辨率为1~16对极/圈任意整数可编程。

另外MT6511还提供了输出单线(OWI)和3线 SPI两种通信接口,供用户读取16比特的绝对值角度数 据和读写其他内部寄存器。用户也可以通过SPI/OWI 接口对芯片内部的EEPROM进行烧录操作。

对于一些特殊应用,MT6511还单独提供了一个角度位置的开关量输出(SWO),开关点和开关迟滞窗口的参数均为用户可编程。

MT6511作为一颗主要面向汽车应用的芯片,芯 片内部设计了一系列的功能安全机制,可以支持单路 芯片ASIL-B、双路芯片ASIL-D的功能安全要求。

汽车级应用的磁性角度传感器芯片

目录

特性	和优势	1
应用	J	1
概述	<u> </u>	1
1.	引脚定义	4
	1.1 SOP-8封装	4
	1.2 TSSOP-16封装	5
2.	型号列表	6
3.	功能描述	7
4.	极限参数(非正常工作条件)	8
5.	电气性能参数	9
6.	外加输入磁参数	13
7.	输出模式	14
	7.1 IO引脚功能配置	14
	7.2 模拟量输出模式	17
	7.3 PWM输出模式	18
	7.4 开关量输出模式	19
	7.5 正交AB和零位Z信号输出模式(ABZ模式)	20
	7.6 UVW输出模式	25
	7.7 SPI接口 (3线)	26
	7.7.1 SPI时序	26
	7.7.2 SPI协议	27
	7.7.3 SPI读角度	30
	7.8 SENT接口	31
	7.8.1 双路节气门数据帧格式A.1(H.1)	32
	7.8.2 单路安全传感器数据帧格式A.3(H.4)	33
	7.8.3 增强型串行消息格式	34
	7.9 OWI接口	36
8.	输出特性	37
	8.1 可编程的输出传输特性	37
	8.2 输出曲线任意8点编程	38
	8.3 17点等分输出曲线编程	39
9.	功能安全	40
	9.1 功能安全手册	40
	9.2 集成的自诊断机制	40

汽车级应用的磁性角度传感器芯片

10.	推荐应	用电路	43
	10.1	模拟量输出模式参考电路	43
	10.2	模拟量+开关量输出模式参考电路	44
	10.3	PWM/SENT输出模式参考电路	45
	10.4	SPI接口参考电路	47
	10.5	ABZ/UVW输出模式参考电路	48
11.	机械角	度和方向定义	49
12.	封装信息	息	50
	11.1	SOP-8封装	50
	11.2	TSSOP-16封装	51
13.	版权和	申明	52
14.	版本信息	息	53

汽车级应用的磁性角度传感器芯片

1. 引脚定义

1.1 SOP-8封装

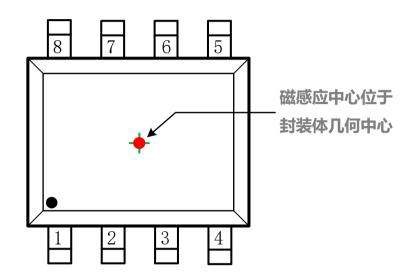


图-1: SOP-8封装

表-1: SOP-8封装引脚列表

A-1. 301 - 0±3級3[pap79級							
名称	序号	类型	描述				
VDD	1	电源	5V供电电源				
CSN	2	数字输入	SPI片选信号				
SWO	3	数字输出	开关量输出、增量信号B或V				
SCK	4	数字输入	SPI时钟				
OUT	5	模拟输出、数字输入/输出	模拟量、PWM、SENT、OWI、增量信号A或U				
SDAT	6	数字输入/输出	SPI双向数据				
TEST	7	数字输入/输出	麦歌恩工厂测试专用、增量信号Z或W				
VSS	8	地	地				

汽车级应用的磁性角度传感器芯片

1.2 TSSOP-16封装

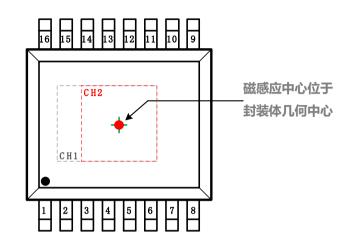


图-2: TSSOP-16 封装 (CH1、CH2为双路芯片每一路的编号)

表-2: TSSOP-16 封装引脚列表

名称	序号	类型	描述
TEST_CH1	1	数字输入/输出	CH1芯片麦歌恩测试引脚、增量信号Z或W
VSS_CH1	2	地	CH1芯片地
VDD_CH1	3	电源	CH1芯片5V供电电源
CSN_CH1	4	数字输入	CH1芯片SPI片选信号
SWO_CH2	5	数字输出	CH2芯片开关量输出、增量信号B或者V
OUT_CH2	6	模拟输出、数字输入/输出	CH2芯片模拟量/PWM/OWI/SENT,增量信号A或U
SCK_CH2	7	数字输入	CH2芯片SPI时钟
SDAT_CH2	8	数字输入/输出	CH2芯片SPI双向数据
TEST_CH2	9	数字输入/输出	CH2芯片麦歌恩测试引脚、增量信号Z或W
VSS_CH2	10	地	CH2芯片地
VDD_CH2	11	电源	CH2芯片5V供电电源
CSN_CH2	12	数字输入	CH2芯片SPI片选信号
SWO_CH1	13	数字输出	CH1芯片开关量输出、增量信号B或者V
SCK_CH1	14	数字输入	CH1芯片SPI时钟
OUT_CH1	15	模拟输出、数字输入/输出	CH1芯片模拟量/PWM/OWI/SENT,增量信号A或U
SDAT_CH1	16	数字输入/输出	CH1芯片SPI双向数据

2. 型号列表

MT6511CT为单路SOP-8封装、MT6511GT为双路TSSOP-16封装,包装形式均为卷盘 (3000颗/盘)。

表-3: 型号列表

型 号	单/双路	工作磁场范围	输出形式
MT6511CT-STD	单路	10mT~50mT	模拟输出
MT6511GT-STD	双路	10mT~50mT	模拟输出
MT6511CT-STW	单路	20mT~90mT	模拟输出
MT6511GT-STW	双路	20mT~90mT	模拟输出
MT6511CT-PMP	单路	10mT~50mT	PWM输出 (推挽)
MT6511GT-PMP	双路	10mT~50mT	PWM输出 (推挽)
MT6511CT-STP	单路	10mT~50mT	SENT输出 (推挽)
MT6511GT-STP	双路	10mT~50mT	SENT输出 (推挽)
MT6511CT-SPI	单路	10mT~50mT	SPI输出
MT6511GT-SPI	双路	10mT~50mT	SPI输出

常见的钕铁硼磁铁(牌号N35)和常见的铁氧体磁铁(牌号Y30BH)在芯片表面的垂直磁场分量强度 B_Z 随磁铁和芯片间隙(AG)的变化分布的仿真结果如图-3所示。我们强烈建议使用径向充磁的10mm钕铁硼磁铁。

B +Bz

40 35 30 25 [mT] 20 ²⁶ 15 10 0.5 0 1.5 2.5 3.5 4.5 AG [mm] --- N35-D10mm → N35-D8mm ----Y30BH-D10mm →Y30BH-D8mm

径向充磁磁铁在芯片表面的垂直磁场分量 B_z vs. 磁铁芯片的间隙

图-3: 常见磁铁在芯片表面的垂直磁场分量Bz强度随间隙(AG)的变化

汽车级应用的磁性角度传感器芯片

3. 功能描述

MT6511采用CMOS标准工艺制造,图-4所示为芯片的功能框图。芯片主信号通路包括了随磁场角度变化输出正弦和余弦电压的霍尔阵列、前端模拟信号放大器(G)、用于信号转换的模数转换器(ADC)、用于角度计算的数字信号处理单元和用于产生线性电压输出的数模转换器(DAC)。其他辅助模块包括集成的LDO、Bandgap(带隙基准电压源)、RC震荡时钟发生器,以及存储出厂芯片校准参数和客户端编程参数的EEPROM。另外MT6511还集成了温度传感器,利用温度传感器,MT6511每颗芯片在出厂测试时均标定了各自的温度特性,从而降低芯片核心参数INL随温度的变化。

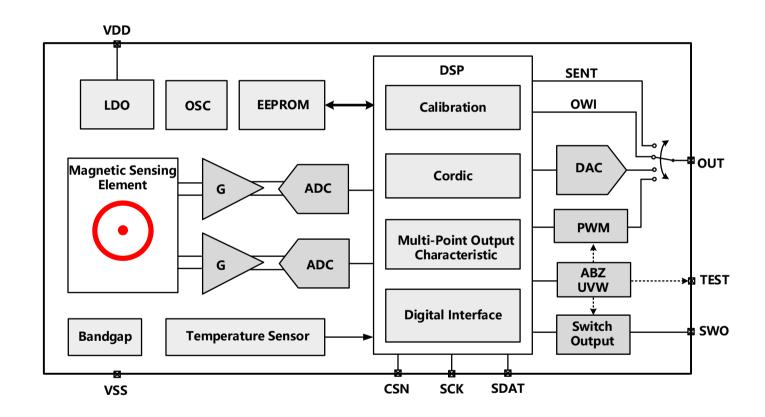


图-4: 芯片系统框图

汽车级应用的磁性角度传感器芯片

4. 极限参数 (非正常工作条件)

表-4: 最大额定值 (不损伤芯片但非正常工作条件,正常工作条件请参考表-5)

描述	符号	最小值	最大值	单位	<i>,</i> 备注
芯片电源端VDD电压	VDD	-18	30	V	电源电压
芯片输出端VOUT电压	V _{OUT}	-0.3	30	V	引脚:OUT
芯片其他引脚电压		-0.3	5.5	V	引脚: SWO, CSN, SDAT, SCK, TEST
		-25	25	mA	引脚: OUT (模拟输出模式)
输出电流	I _{out}	-50	50	mA	引脚; OUT (PWM/SENT输出模式)
		-30	30	mA	引脚: SWO, CSN, SDAT, SCK, TEST
工作环境温度	T_{AMB}	-40	150	°C	ı -
工作结温	Tj	-40	160	°C	-
存储温度	$T_{Storage}$	-55	150	°C	-
ESD电压:人体接触放电模式	V_{HBM}	-	±6.0	kV	AEC-Q100-002
ESD电压: 充电器件放电模式	V_{CDM}	-	±1.0	kV	AEC-Q100-011

- 1) 考虑T_{AMB}和与T_J相关的电流消耗和安装情况
- 2) 其他的温度条件需求请联系麦歌恩微电子

超出表-4所列的极限参数的操作可能会对芯片造成永久性损坏。即使芯片功能没有损坏,可靠性和寿命也可能受到不利的影响。在这些极端条件下无法保证芯片的正常运行。

汽车级应用的磁性角度传感器芯片

5. 电气性能参数

以下参数的工作条件: T_{AMB}=-40 ~ 150℃, VDD=4.5~5.5V , 除非另有说明。

表-5: 电气性能参数

秋 5. 屯 (注前						
符号	描述	条件	最小值	典型值	最大值	单位
VDD	芯片供电电压	-	4.5	5.0	5.5	V
		单路,模拟输出开启	8	11	14	mA
IDD	++ L+T/Frd>>>	单路,模拟输出关闭	7	10	13	mA
IDD	芯片工作电流	双路,模拟输出开启	16	22	28	mA
		双路,模拟输出关闭	14	20	26	mA
V_{TH_UV}	芯片欠压保护阈值电压		4.0	4.15	4.30	V
V _{HYS_UV}	欠压保护阈值电压迟滞窗口		-	180	-	mV
	所有输出模式稳定到当前温度 值 (默认初始温度27℃)	开启芯片内部温度补偿	-	32	-	ms
T _{SU}	模拟输出模式 (不包含压摆率的影响)		-	0.66	-	ms
(芯片启动时间)	PWM输出模式	关闭芯片内部温度补偿	-	1.1	-	ms
	SENT输出模式	בו וז אַ נְשׁילְנוּנְיּן רְיטינּיוּן אַ	-	3.3	-	ms
	ABZ/UVW输出模式		-	0.65	-	ms
		通用时序				
ΔFS	系统时钟频率范围	全部VDD和T _{AMB} 范围内	-5	-	5	%
T _{DELAY}	匀速转动条件下的系统延时		-	50	-	us
T _{STEP}	大信号阶跃响应时间 (不包含压摆率的影响)		-	650	-	us
	 模排 	以输出(Analog)参数				
FR	模拟输出 (DAC) 刷新率	-	-	8	-	kHz
I _{SHORT_ANA}	模拟输出短路电流(芯片有输	Vout=0V	-	-18	-	mA
'SHORT_ANA	出短路保护机制)	Vout=VDD	-	18	-	

汽车级应用的磁性角度传感器芯片

以下参数的工作条件: TAMB=-40~150℃, VDD=4.5~5.5V , 除非另有说明。

符号	描述	条件	最小值	典型值	最大值	单位	
		下拉至VSS	5	-	-		
R_L	输出电阻负载	上拉至VDD	5	-	-	kΩ	
VSAT_LO	模拟输出低电平饱和电压	上拉电阻R _L ≥5KΩ	-	2	4	%VDD	
VSAT_HI	模拟输出高电平饱和电压	下拉电阻R _L ≥5KΩ	96	98	-	%VDD	
Clamp_low	模拟输出低电平钳位电压	可编程	2	-	-	%VDD	
Clamp_high	模拟输出高电平钳位电压	可编程	-	-	98	%VDD	
	1#10V 6 . I . = 150 -	C _L ≤10nF	400	-	-		
SR	模拟输出压摆率	C _L ≤100nF	120	-	-	V/ms	
R _{OUT}	模拟输出输出电阻	直流	-	10	-	Ω	
	P	WM/SENT输出参数					
F_{PWM}	PWM频率	可编程	-5%	125 ~ 2000	+5%	Hz	
T _{TICK}	SENT单位节拍时间	可编程	-	1.5 3.0 6.0	-	us	
	PWM/SENT输出短路电流(芯	V _{OUT} =0V	-	-50	-		
I _{SHORT_PWM}	片有輸出短路保护机制)	V _{OUT} =VDD	-	50	-	mA	
PWM_VOH SENT_VOH	PWM/SENT输出逻辑高电平	推挽 (I _{OUT} =5mA)	96	-	-	%VDD	
PWM_VOL SENT_VOL	PWM/SENT输出逻辑低电平	推挽 (I _{OUT} =-5mA)	-	-	4	%VDD	
R _{PU}	PWM/SENT开漏输出推荐外接 上拉电阻阻值	上拉电阻外接电源必须 ≤5V		1.0		ΚΩ	

汽车级应用的磁性角度传感器芯片

以下参数的工作条件: T_{AMB}=-40~150℃, VDD=4.5~5.5V , 除非另有说明。

符号	描述	条件	最小值	典型值	最大值	单位
		推挽, C _L =1nF	-	-	0.5	us
T _{RISE}	PWM/SENT输出上升沿时间	开漏, R _{PU} =1.0K, C _L =1nF	-	-	3	us
		推挽, C _L =1nF	-	-	0.5	us
T _{FALL}	PWM/SENT输出下降沿时间	开漏, R _{PU} =1.0K, C _L =1nF	-	-	0.5	us
	编码AB.	Z/UVW、SPI 输入/输出	参数			
AB _{RES}	A或B的脉冲数/圈	可编程	1	-	4,096	Pulse/ Round
AB _{Freq}	A或B脉冲的频率	注释[1]	-	-	512	KHz
GPIO_VOL	GPIO输出逻辑低电平	推挽 (lout=-5mA)	-	-	10	%VDD
GPIO_VOH	GPIO输出逻辑高电平	推挽 (lout=5mA)	90	-	-	%VDD
GPIO_VIL	GPIO输入逻辑低电平		-	-	30	%VDD
GPIO_VIH	GPIO_VIH GPIO输入逻辑高电平		70	-	-	%VDD
T _{RISE}	RISE 数字逻辑输出高电平		-	-	40	ns
T _{FALL}	数字逻辑输出低电平	推挽, C _L =20pF	-	-	40	ns
		精度参数				
INL	积分非线性	参考图-5	-1	-	1	Deg.
INL_TD	积分非线性的温漂	全温范围	-0.5	-	0.5	Deg.
DNL	微分非线性	参考图-5	-0.01		0.01	Deg.
ANG_NOISE	角度噪声(不包含DAC噪声)	B=10mT	+	0.02	-	Degrms
ERM	模拟输出比例误差	注释[2]	-0.2	-	0.2	%VDD
DAC_RES	DAC分辨率	设计保证	-	12	-	Bit
DAC_GN	DAC增益误差	标准差 (1σ)	-	0.5	-	%
DAC_GN_TD	DAC增益的温漂	全温范围	-	±0.05	-	%

以下参数的工作条件: T_{AMB}=-40 ~ 150℃, VDD=4.5~5.5V , 除非另有说明。

符号	描述	条件	最小值	典型值	最大值	单位		
DAC_OS	DAC输出失调电压	标准差	-	±0.75	-	mV		
DAC_OS_TD	DAC输出失调电压温漂	全温范围	-	±2.0		mV		
DAC_NOISE	DAC输出噪声	标准差 (1σ)	-	-	0.01	VDD%		
CMFR	共模杂散磁场抑制比		-	30	-	dB		
EEPROM 参数								
Data Retention	EEPROM存储数据可保持时间		10	-	-	Years		
Endurance	EEPROM可擦写次数		100	-	-	Cycles		

注释[1]: AB信号频率(AB_{Freq})是转速(RS)和AB分辨率(AB_{RES})的乘积。比如,AB设置在最高分辨率4,096脉冲/圈的情况下,最高可以支持到的转速(RS)为:

$$RS_{MAX} = \frac{AB_{Freq}}{AB_{Pas}} = \frac{512\text{K}Hz}{4,096} = 125Hz = 7,500转/分钟$$

实际上MT6511可以输出频率>512KHz的AB信号,但此时INL性能就无法保证了。

注释[2]:模拟输出电压是和电源电压成比例的,随电源电压的变化而变化。模拟输出和电源的比例误差计算如下:

$$ERM = \left[\frac{Vout(V_{DD})}{V_{DD}} - \frac{Vout(5V)}{5V} \right] \bullet 100\%$$

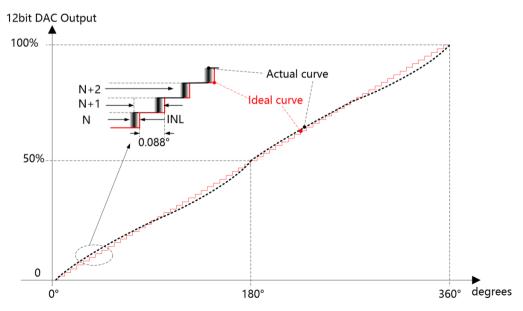
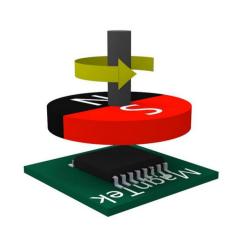


图-5: INL/DNL示意图


汽车级应用的磁性角度传感器芯片

6. 外加输入磁参数

工作条件: T_{AMB}=-40 to 150℃, VDD=4.5~5.5V 除非特殊说明, 磁铁充磁方式为1对极(南北2级)径向充磁。

表-6: 磁参数

符号	描述	条件	最小值	典型值	最大值	単位	
Dmag	磁铁直径	推荐圆柱形径向充磁磁铁,尺寸: Ø10mm x 2.5mm	-	10	-	mm	
Tmag	磁铁厚度		-	2.5	-	mm	
Bpk	输入工作磁场强度 (在芯片表面测得的垂直于芯 片表面的磁场分量)	MT6511CT/GT-STD MT6511CT/GT-PMP MT6511CT/GT-STP MT6511CT/GT-SPI	±10	-	±50	mT	
	/ 14次四日1144/71/71 里 /	MT6511CT/GT-STW	±20	-	±90	mT	
AG	磁铁和芯片表面的间隙	磁铁和芯片表面的距离	-	2.5	-	mm	
DISP	偏心	磁铁中心和芯片感应中 心的偏差 (如图-6所示)	-	-	0.3	mm	
RS	转速	-	-	-	30,000	RPM	
TCmag1	推荐的磁铁材料和温度系数	NdFeB (钕铁硼)	-	-0.12	-	%/℃	
TCmag2	XXXXXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SmCo (钐钴)	-	-0.035	-	%/°C	

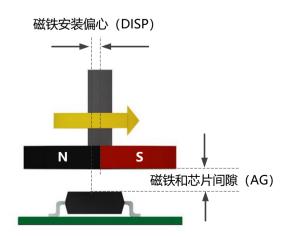


图-6: 磁铁的安装

汽车级应用的磁性角度传感器芯片

7. 输出模式

MT6511提供了模拟量、PWM、SENT、ABZ、UVW和SWO这些可配置的输出模式,另外也提供了单独的 (不与别管脚复用的) 3线SPI接口 (CSN, SCK, SDAT) 。

7.1 I/O引脚模式配置

MT6511的模拟量、PWM、SENT、ABZ、UVW和SWO输出,以及SPI接口在SOP-8/TSSOP-16两种封装形式下的I/O复用情况如表-7和表-8所示。

表-7: SOP-8封装I/O配置

引脚 序号	Analog 模式	PWM 模式	SENT 模式	ABZ 模式	UVW 模式	SWO 模式
2	CSN	CSN	CSN	CSN	CSN	CSN
3	-	-	-	В	V	SWO
4	SCK	SCK	SCK	SCK	SCK	SCK
5	Analog	PWM	SENT	А	U	Analog/PWM/SENT
6	SDAT	SDAT	SDAT	SDAT	SDAT	SDAT
7	-	-	-	Z	W	-

表-8: TSSOP-16封装I/O配置

1X 0. 1						
引脚	Analog	PWM	SENT	ABZ	UVW	SWO
序号	模式	模式	模式	模式	模式	模式
1	-	-	-	Z_CH1	W_CH1	-
4	CSN_CH1	CSN_CH1	CSN_CH1	CSN_CH1	CSN_CH1	CSN_CH1
5	-	-	-	B_CH2	V_CH2	SWO_CH2
6	Analog_CH2	PWM_CH2	SENT_CH2	A_CH2	U_CH2	Analog_CH2/ PWM_CH2/SENT_CH2
7	SCK_CH2	SCK_CH2	SCK_CH2	SCK_CH2	SCK_CH2	SCK_CH2
8	SDAT_CH2	SDAT_CH2	SDAT_CH2	SDAT_CH2	SDAT_CH2	SDAT_CH2
9	-	-	-	Z_CH2	W_CH2	-
12	CSN_CH2	CSN_CH2	CSN_CH2	CSN_CH2	CSN_CH2	CSN_CH2
13	-	-	-	B_CH1	V_CH1	SWO_CH1
14	SCK_CH1	SCK_CH1	SCK_CH1	SCK_CH1	SCK_CH1	SCK_CH1
15	Analog_CH1	PWM_CH1	SENT_CH1	A_CH1	U_CH1	Analog_CH1/ PWM_CH1/SENT_CH1
16	SDAT_CH1	SDAT_CH1	SDAT_CH1	SDAT_CH1	SDAT_CH1	SDAT_CH1

MT6511的模拟量、PWM、SENT 和OWI 输出复用了'OUT'引脚(SOP-8 封装的Pin.5 , TSSOP-16 封装的Pin.6 和 Pin.15),这些输出可以通过表-9中的'Output_Mode[1:0]'寄存器来选择配置。单线通信(OWI)主要用来和MT6511通信和编程,拥有最高的优先权。MT6511每次上电时,芯片都会在一个特定的时间窗口内检测OWI接口是否被激活,只有当OWI确认未被激活或者OWI通讯结束后,OUT引脚才会自动切换回由'Output_Mode[1:0]'寄存器定义的模拟输出、PWM输出或者 SENT输出。

表-9: SOP-8封装 Pin.5 输出 (TSSOP-16 封装Pin.6 和Pin.15)

寄存器	值	描述
	0	模拟输出 (负载电容CL<100nf)
	1	PWM 输出 (推挽输出或开漏输出可配置)
Output_Mode[1:0]	2	不带Pause的SENT输出 (推挽输出或开漏输出可配置)
	3	带Pause的SENT输出 (推挽输出或开漏输出可配置)

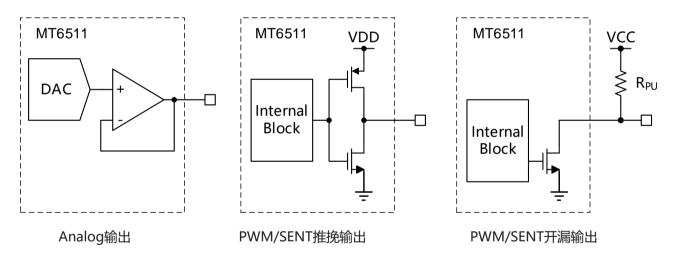


图-7. 模拟输出,PWM/SENT输出的类型

如图-7所示,MT6511的模拟量输出,是由一个闭环运放对外驱动内部12位数模转换器(DAC)的信号。 PWM/SENT的输出类型(推挽或者开漏)可通过表-10中的 'Output_Type' 寄存器进行配置。如果配置为开漏输出,需要连接一个外部的上拉电阻 R_{PU}(推荐阻值1.0KΩ,并确保外部电源VCC≤5V)。在开漏模式下,无法通过OUT引脚对芯片编程。

表-10: SOP-8封装 Pin.5 输出 (TSSOP-16 封装Pin.6 和Pin.15)

寄存器	值	描述		
	0	PWM/SENT推挽输出		
Output_Type	1	PWM/SENT开漏输出(NMOS,外接上拉电阻R _{PU})		

汽车级应用的磁性角度传感器芯片

MT6511的增量编码输出ABZ/UVW可通过表-11中的 'Encoder_Output_Enable' 配置打开。 增量编码模式ABZ/UVW一旦被开启,模拟量输出、PWM/SENT输出就会相应地自动关闭。表-12中所列的寄存器 'Encoder_Output_SEL'可被用来配置ABZ或者UVW输出。

表-11: 编码器输出使能

寄存器	值	描述
Encoder_Output_Enable	0	模拟量/PWM/SENT 输出模式
	1	编码器输出模式(ABZ或者UVW)

表-12: 编码器输出选择(ABZ或者UVW)

寄存器	值	描述
Encoder_Output_SEL	0	ABZ 输出模式
	1	UVW 输出模式

MT6511的开关量输出模式可通过表-13中的 'Switch Output Enable' 寄存器开启。

表-13: SOP-8封装 Pin.3 输出 (TSSOP-16封装Pin.5和Pin.13)

寄存器	值	描述
	0	开关模式关闭
SW_Output_Enable	1	开关模式开启

开关输出模式优先级高于增量编码输出模式。 SWO 引脚 (SOP-8封装 Pin.3 , TSSOP-16 封装Pin.5 和Pin.13)的真值表如表-14所示。

表-14: SOP-8封装 Pin.3 输出 (TSSOP-16封装Pin.5和Pin.13) 真值表

SWO管脚的输出	寄存器 SWO_Output_Enable	寄存器 Encoder_Output_Enable	寄存器 Encoder_Output_SEL
开关量输出	1	X	Χ
增量编码输出 'B'	0	1	0
增量编码输出 'V'	0	1	1
MagnTek工厂测试	0	0	Х

7.2 模拟输出模式

模拟量输出是MT6511这一类产品在汽车应用里目前最常用到的。MT6511出厂配置的默认模拟量输出为0~360°对应0%~100%VDD。模拟输出是基于内部的12位DAC和输出驱动运放,12位角度数据也可以按任意8点或者17点等分进行编程以获取用户期望的曲线,详情请参考第8章。

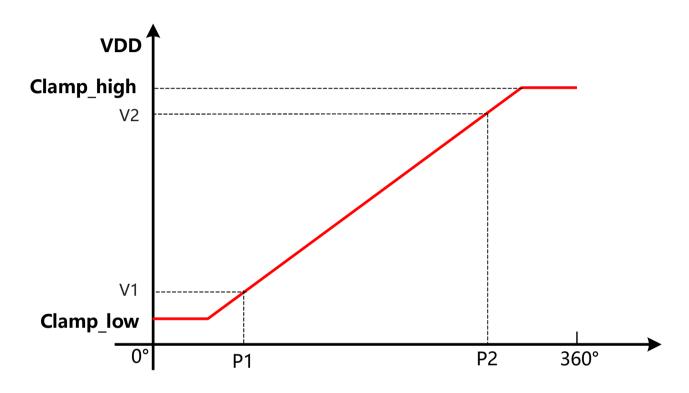


图-8:模拟输出

如图-9所示,MT6511设计了过压和过流检测和保护机制以保护模拟输出。MT6511允许的正常工作电压范围是4.5~5.5V,但模拟输出(对地)可以承受最高+30V的电压而不损坏。另外输出过流保护机制确保了输出在短路时最大只能流过18mA(典型值)的电流以避免损坏芯片。

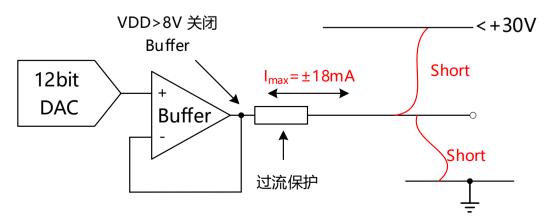


图-9: 模拟量过压和过流保护

汽车级应用的磁性角度传感器芯片

7.3 PWM输出模式

如图-10所示,当MT6511的PWM输出模式开启,输出信号是一个脉宽调制的数字信号。PWM输出类型可以是推挽或开漏的,请参见图-7。MT6511的PWM信号分辨率为12位,PWM的频率和极性都是可编程,如图-10和表-15所示。

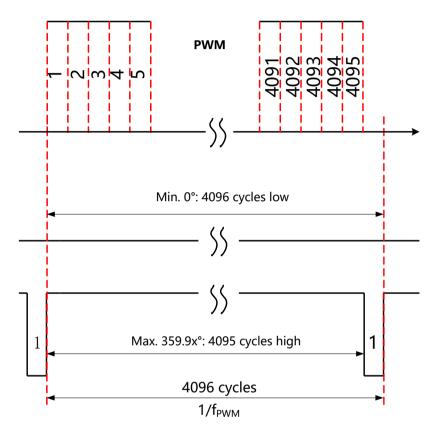


图-10: PWM输出

表-15: PWM极性寄存器

寄存器	值	描述
	0	高电平有效
PWM_POL	1	低电平有效

PWM信号的频率可以通过 'PWM_N'寄存,在125Hz~2KHz之间进行配置,计算公式如下:

 $F_{PWM} = 8,192,000 / PWM N (Hz)$

16比特的 'PWM N' 寄存器代表 4,096~65,536间的正整数, <4,096的值均被视为4096。

汽车级应用的磁性角度传感器芯片

7.4 开关量输出模式

如图-11所示,当MT6511的角度位置开关输出被开启后,输出信号的开关点可以通过'SW_OP'寄存器设置,开关的迟滞窗口可以通过'SW_HYS'寄存器设置。开关量输出可以和模拟量、PWM或SENT同时输出。

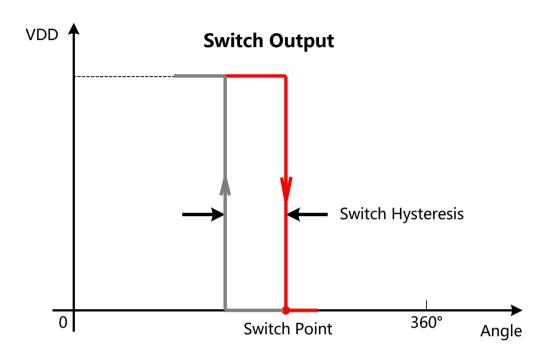


图-11: 开关量输出

表-16: 开关点寄存器

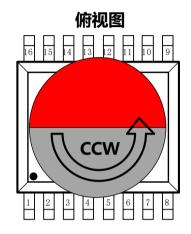
寄存器	值	描述
Switch_Point[15:0]	16比特	16比特对应0~360°

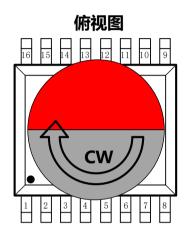
表-17: 开关点迟滞寄存器

寄存器	值	描述
Switch_Hysteresis[7:0]	8比特	1 LSB=0.088°

表-18: 开关量输出极性寄存器

寄存器	值	描述
	0	角度超过开关点输出低电平
Switch_Output_Polarity	1	角度超过开关点输出高电平





7.5 正交A、B和零位Z信号输出 (ABZ模式)

默认配置的正交A、B和零位Z信号输出如图-12所示,当位于芯片正上方的磁铁(俯视)逆时针(CCW)转动时,B信号的上升沿领先于A信号的上升沿1/4周期,反之当顺时针(CW)转动时,A信号的上升沿领先B信号的上升沿1/4个周期。Z信号出现的位置代表0°的位置。在芯片上电以后的0.7ms以内是没有任何ABZ信号输出的,0.7ms后芯片才会输出稳定正确的ABZ信号。

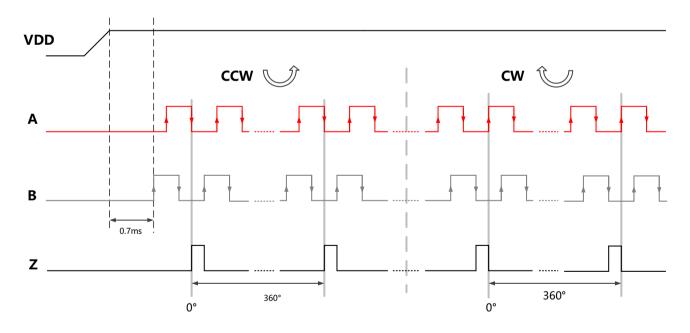
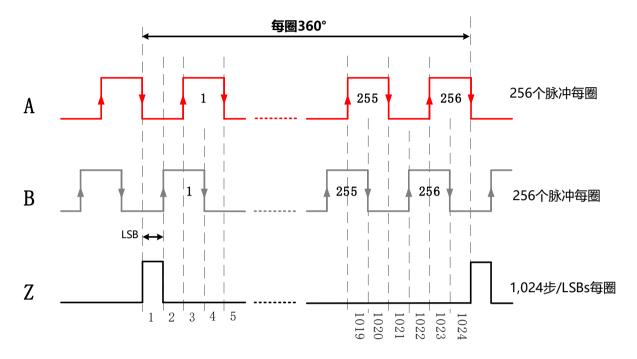


图-12: ABZ输出

表-19: 旋转方向 '寄存器

寄存器	值	旋转方向
207 212	0	逆时针旋转时,输出B领先输出A
ROT_DIR	1	顺时针旋转时,输出A领先输出B

^{&#}x27; ROT DIR' 寄存器对所有角度输出都起作用,包括模拟量、SWO、ABZ/UVW、PWM、SENT和SPI



汽车级应用的磁性角度传感器芯片

MT6511的ABZ输出的分辨率为1~4,096 脉冲/圈用户可编程。分辨率各种单位(比特/圈、脉冲/圈、步/圈等等)之间的关系如图-13和图-14所示。

10比特=210 LSBs=1,024步=256脉冲

图-13: ABZ输出分辨率=10 位=256 脉冲/圈

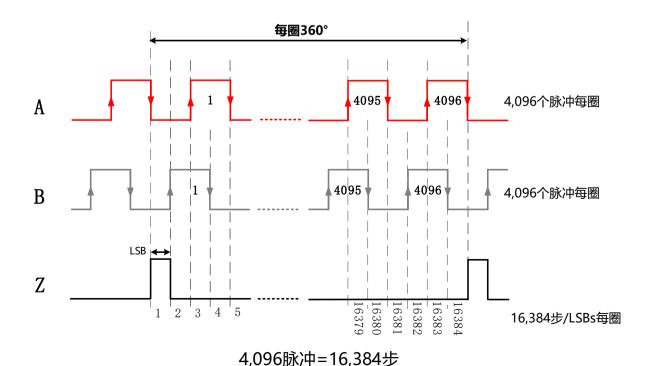


图-14: ABZ 输出分辨率=4,096 脉冲/圈

ABZ的分辨率由12比特的'ABZ_RES[11:0]'寄存器定义。

表-20: ABZ分辨率寄存器

寄存器	值	AB分辨率(脉冲/圈)
	0x000	1
	0x001	2
	0x002	3
ABZ_RES[11:0]		
	0xFFC	4,093
	0xFFD	4,094
	0xFFE	4,095
	0xFFF	4,096

Z信号是可编程的芯片零位, Z信号的宽度可以是1、2、4、8、16 LSBs或者60°、120°、180°用户可编程的如图-15和图-16所示。另外, 芯片设计保证了每圈只会出现一次Z信号。

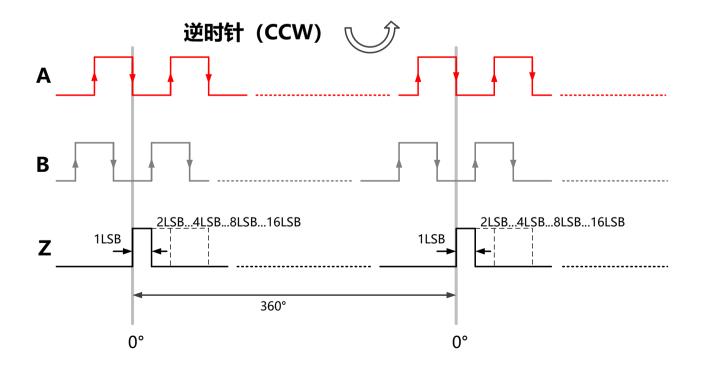


图-15: Z信号脉冲宽度=1,2,4,8 and 16 LSBs

汽车级应用的磁性角度传感器芯片

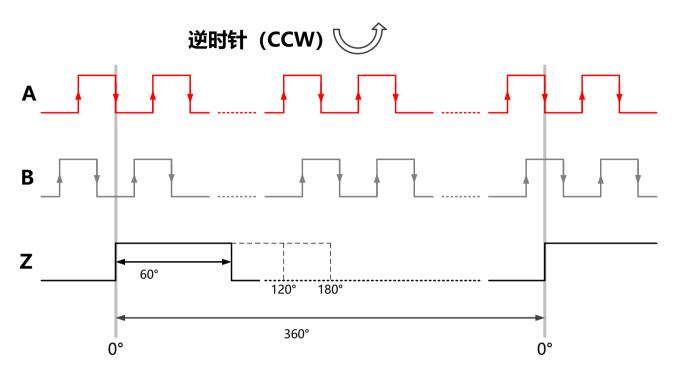


图-16: Z信号脉冲宽度=60°, 120°和180°

Z信号脉冲宽度由3比特的 'Z PUL WID[2:0]' 寄存器来定义。

表-21: Z脉冲宽度寄存器

寄存器	值	宽度 (LSBs/°)	值	宽度 (LSBs/°)
Z_PUL_WID[2:0]	0x0	1	0x4	16
	0x1	2	0x5	60°
	0x2	4	0x6	120°
	0x3	8	0x7	180°

Z信号绝对角度位置由12比特的'ZERO_POS[11:0]'寄存器来定定义。

表-22: Z信号零位寄存器

寄存器	值	绝对角度位置(°)
	0x000	0
	0x001	0.088
	0x002	0.176
ZERO_POS[11:0]		
	•	·
	•	
	0xFFE	359.824
	0xFFF	359.912

Z脉冲信号的相位也可以通过 'Z PHASE[1:0]' 寄存器编程实现,如图-17所示。

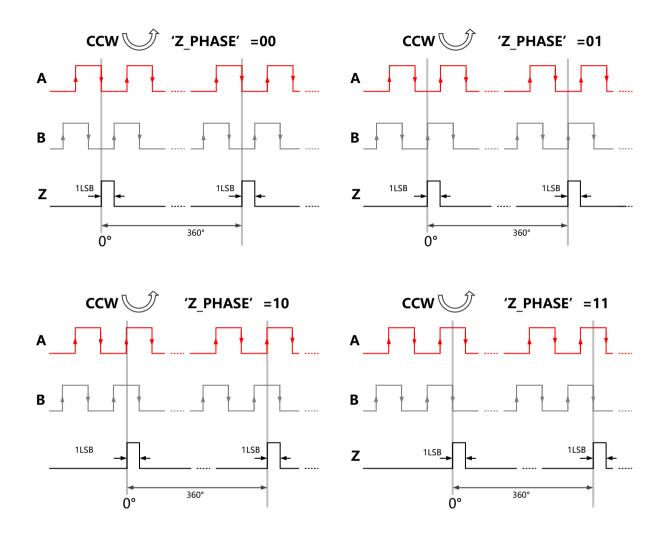


图-17: Z 脉冲相位在 'ROT DIR' =0 , 'SWAP AB' =0, 'Z EDGE' =0的示意图

Z脉冲的边沿与0°的关系可以通过 'Z_EDGE' 寄存器定义。

0 degree

表-23: Z脉冲沿位置寄存器

寄存器	值	描述		
7 5005	0x0	Z脉冲上升沿对齐0°(逆时针旋转时)		
Z_EDGE	0x1	Z脉冲下降沿对齐0°(逆时针旋转时)		
	Z_EDGE=	=0 Z_EDGE=1		

图-18: Z脉冲边沿与0°的关系 (逆时针CCW情况下)

0 degree

汽车级应用的磁性角度传感器芯片

7.6 UVW输出模式

MT6511提供互成120°角度的UVW输出如图-19所示。 每一圈的UVW对极数为1~16对极用户可编程,如表-24所示。

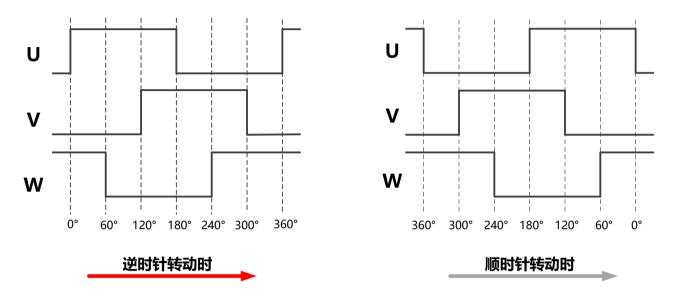


图-19: UVW输出波形

表-24: UVW分辨率寄存器

寄存器	值	UVW对极数
	0x0	1
	0x1	2
	0x2	3
	0x3	4
	0x4	5
	0x5	6
	0x6	7
LIVAM DECISION	0x7	8
UVW_RES[3:0]	0x8	9
	0x9	10
	0xA	11
	0xB	12
	0xC	13
	0xD	14
	0xE	15
	0xF	16

7.7. SPI接口 (3线)

MT6511提供了3线SPI接口,上位机或者微控制器可以通过该接口读取芯片内部的寄存器,得到绝对角度信息和诊断状态;也可以通过SPI接口对MT6511进行编程操作。

7.7.1 SPI时序

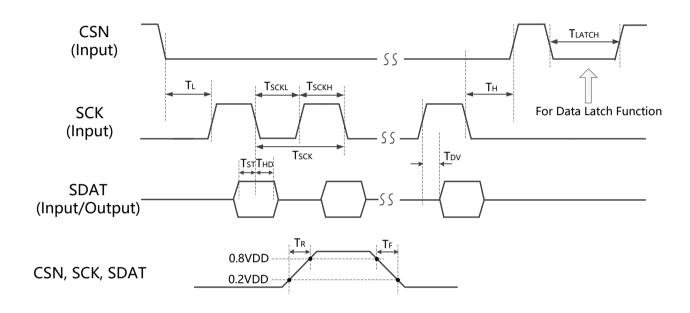


图-20 3线SPI时序图

表-25: SPI时序参数

参数	描述	最小值	典型值	最大值	单位
T_L	CSN下降沿到SCK上升沿之间的延时	100		-	ns
T_{SCK}	时钟周期	125		-	ns
T_{SCKL}	时钟低电平时间	50		-	ns
T _{SCKH}	时钟高电平时间	50		-	ns
T _H	SCK时钟最后一个上升沿到CSN上升沿的延时	0.5•T _{SCK}		-	ns
T_R	数字信号上升沿(20pf 负载电容)	-	10	-	ns
T _F	数字信号下降沿(20pf 负载电容)	-	10	-	ns
T_DV	MISO数据有效时间 (20pf 负载电容)	-	-	15	ns
T _{ST}	MOSI 数据建立时间	10	-	-	ns
T _{HD}	MOSI 数据保持时间	10	-	-	ns
T _{LATCH}	锁存脚功能的有效CSN低电平周期	1	-	-	us
T_W	SDAT数据线输入输出之间转换的时间	0	125	-	ns

7.7.2 SPI协议

MT6511的3线SPI协议的读、写操作如图-21和图-22所示。SPI数据传输开始于CSN的下降沿,结束于CSN的上升沿。SCK 是串行时钟,始终由上位机或者微控制器驱动,空闲非通信时保持低电平。SDAT是双向(输入,输出)串行数据线,在SCK的上升沿发出,在SCK下降沿被采样;MT6511的SDAT管脚除了在MT6511输出SDAT数据时处于输出驱动状态,其余时间均保持为高阻输入状态。

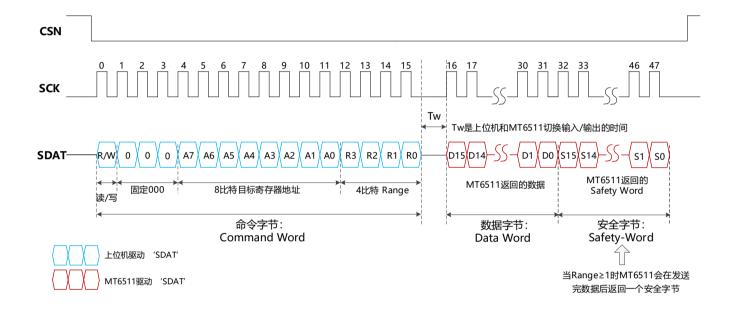


图-21: 3线SPI读操作

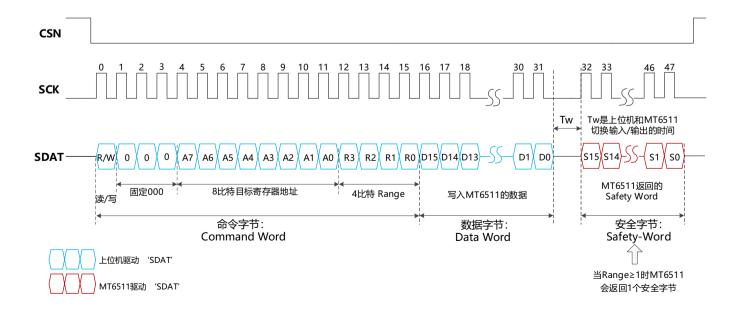


图-22: 3线SPI写操作

汽车级应用的磁性角度传感器芯片

表-26: SPI命令字 (Command Word) 结构

比特位	名称	描述
Bit[15]	读、写控制位	读操作('1')或写操作('0')
Bit[14:12]	固定值 '000'	
Bit [11:4]	寄存器地址	需要访问的目标寄存器地址
Bit[3:0]	读、写寄存器的范围	N=0: 读/写 1个字(16 位) 不附带安全字 N=1: 读/写 1个字(16 位) 附带安全字 N=2~15: 读/写 N 个字并附带安全字

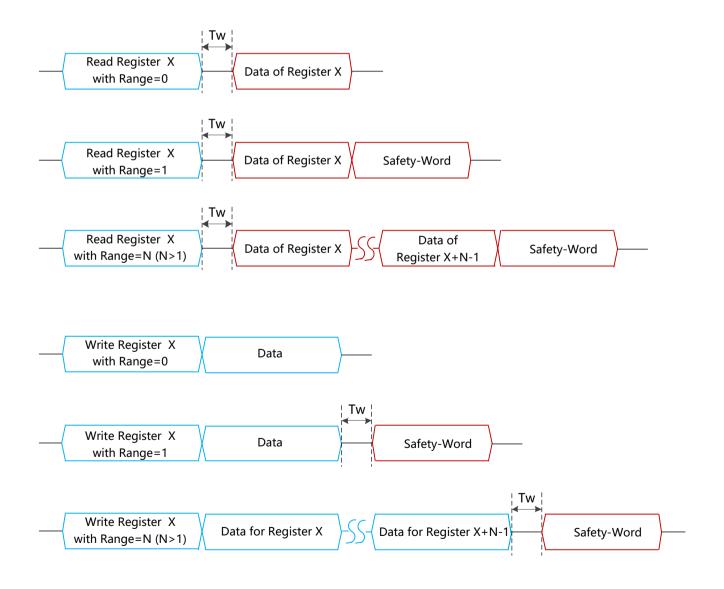


图-23: SPI读写不同寄存器范围

汽车级应用的磁性角度传感器芯片

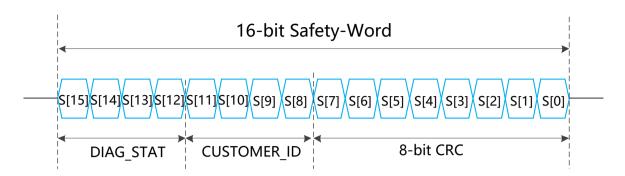


图-24: 安全字结构

表-27: 安全字 (Safety-Word) 结构

名称	位	描述		
	S[15]	参考第9章功能安全 'DIAG_CODE[6]' (见表-36)		
DIAC CTAT 注釈[3]	S[14]	参考第9章功能安全 'DIAG_CODE[5:0]' (见表-36)		
DIAG_STAT 注释[3]	S[13]	参考第9章功能安全 'DIAG_CODE[8:7]' (见表-36)		
	S[12]	参考第9章功能安全 'DIAG_CODE[3:0]' (见表-36)		
CUSTOMER_ID	S[11:8]	4比特用户自定义('CUSTOMER_ID[3:0]'寄存器)的芯片识别ID		
CRC	S[7:0]	CRC校验位		

注释[3]: DIAG_STAT 位在正常操作时为1,在诊断失败的情况下置0

CRC

- · CRC数据范围:
 - (1) 默认寄存器'SPI_CRC_SEL' = 0, CRC校验的数据包含: SPI命令字和数据字;
 - (2) 配置寄存器'SPI_CRC_SEL' = 1, CRC校验的数据包含: SPI命令字、数据字以及一部分安全字S[15:8];
- CRC 多项式: X8+X4+X3+X2+1, 命令字的最高比特'R/W' 最先移入多项式;
- CRC初始值: '11111111_B';
- 余数取反再输出;

7.7.3 SPI读角度

用户可通过3线SPI接口读取MT6511内部的角度寄存器,操作如图-25所示。 寄存器 'DATA_FLAG'是用来配置角度和速度数据是否刷新的标志位: 当 'DATA_FLAG'=0时, 0x01、0x02、0x41和0x42地址上的角度以及速度数据没有数据刷新标志位; 而当 'DATA_FLAG'=1时, 0x01、0x02、0x41和0x42地址上的最高比特成为了本地址数据的刷新标志位RFA和RFV(如表-28所示), 当RFA=1,RFV=1时表示相应数据已经刷新了。另外一个单独的CSN低电平,可以锁存角度寄存器的值,如图-26所示。

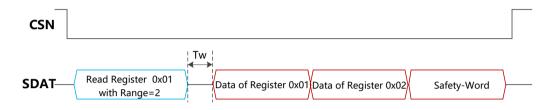


图-25: SPI 读当前角度数据

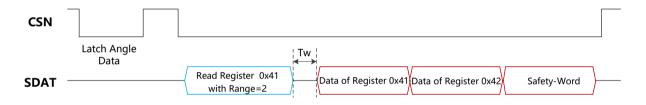


图-26: SPI 读锁存角度数据

表-28: 角度数据相关寄存器

地址	数据位15	数据位14~0				
寄存器 'DATA_	寄存器 'DATA_FLAG' =0					
0x01	ANGLE[15]	ANGLE[14:0] (角度数据)				
0x02	ANGLE_VEL[15]	ANGLE_VEL[14:0] (速度数据)				
0x41	ANGLE_LATCHED[15]	ANGLE_LATCHED[14:0] (锁存的角度数据)				
0x42	ANGLE_VEL_LATCHED[15]	ANGLE_VEL_LATCHED[14:0] (锁存的速度数据)				
寄存器 'DATA_	FLAG' =1					
0x01	RFA	ANGLE[15:1] (角度数据)				
0x02	RFV	ANGLE_VEL[15:1] (速度数据)				
0x41	RFA	ANGLE_LATCHED[15:1] (锁存的角度数据)				
0x42	RFV	ANGLE_VEL_LATCHED[15:1] (锁存的速度数据)				

0~360°绝对角度θ可以通过以下公式计算:

$$\theta = \frac{\sum_{i=0}^{15} \text{ANGLE} < i > \bullet 2^{i}}{2^{16}} \bullet 360^{\circ}$$

汽车级应用的磁性角度传感器芯片

7.8 SENT接口

MT6511提供基于符合SAE J2716 标准的SENT接口,将12比特的角度数据编码成一系列脉冲序列进行输出。12比特数据被分割成3个 '半字节' (Nibble) ,每个半字节是在时域电平两个下降沿之间被编码的4比特数据。SENT数据帧的长度是由最小时间单位 '节拍' (Tick) 定义的, '节拍' 的时间 T_{TICK} 为可编程配置的(1.5 us、3us和6us可选)。如图-27所示,一个校准脉冲(SYNC)半字节后跟一个状态(STATUS)半节字、恒定数量的快速通道DATA半字节、一个CRC半字节和一个可选的PAUSE 脉冲定义了SENT传输的一个消息帧。 MT6511与SENT规范SAE J2716 APR2016版本兼容,并支持符合附录A.1和A.3的数据格式。

基本概念

- 最小时间单位'节拍'(Tick),默认配置一个'节拍'=3us(多档不同时间可选);
- 传输的数据由 '半字节' (Nibble) 组成。每个半字节开始于下降沿(或者上升沿)和一段固定的低电平时间(或高电平时间);
- 每个半字节包含4比特数据,长度为 12+x (x=0, 1, ..., 15) 个节拍 (Tick) , 分别代表b′ 0000~b′ 1111;
- 每次数据传输开始于一个同步半字节(SYCN),结束于一个CRC校验半字节以及一个可选的暂停'Pause' 半字节;
- 在数据(Data)半字节中传输的信息被称为快速通道(Fast Channel)信息,而在状态(Status)半字节中 传输的信息被称为慢通道(Slow Channel)信息或者称为串行通道信息(Serial Message);

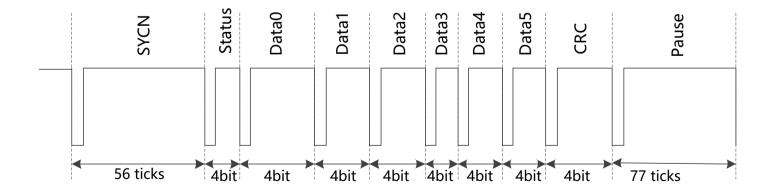


图-27: SENT 数据帧格式

7.8.1 双路节气门传感器数据帧格式A.1 (H.1)

MT6511的SENT输出可以支持SAE J2716 APR2016附录A.1中定义的双路节气门位置传感器帧数据格式。在这一格式下,一帧数据信息包含2个比特的串行信息位SM[1:0], 2比特的状态位S[1:0], 两组12比特数据 CH1[11:0]和 CH2[11:0]以及4比特的CRC校验数据,如图-28所示。CH1一直传送MT6511的12比特角度数据。CH2可通过表-29中的'SENT_CH2_EN'寄存器使能,当CH2使能时,传输的12比特数据可以通过表-30中的'SENT_CH2_DATA'寄存器进行配置。

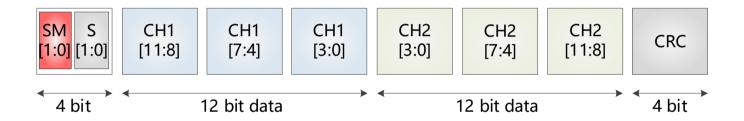


图-28: 双路12位快速数据帧格式

表-29: CH2通道使能控制寄存器

寄存器	值	CH2 数据使能
SENT_CH2_EN	0	CH2数据全 '0'
	1	CH2使能,CH2数据由表-31的配置决定

表-30: CH2通道数据配置寄存器

寄存器	值	CH2 数据
	0	12比特温度传感器数据
	1	4089-CH1
SENT_CH2_DATA	2	用户自定义的12比特数据
	3	4095-CH1

汽车级应用的磁性角度传感器芯片

状态位 S[1:0] 定义

状态半字节 (Status) 的S[1:0] 用来指示芯片检测到的错误。只要检测到错误 S[0] 就会置1, 在这种情况下 DIAG_CODE[15:0] (见表-36) 也会被置为一个非零值; S[1] 被设置成了固定值0。

串行信息SM [1:0] 定义

状态半字节 (Status) 的Bit[2]和Bit[3]用来传输串行信息, 其定义在7.8.3章节中。

CRC校验定义

CRC 数据范围: CH1[11:0] 和 CH2[11:0]总共24 比特

CRC 多项式: X4+X3+X2+1, 初始值' 0101g'

7.8.2 单路安全传感器数据帧格式A.3 (H.4)

MT6511也可以支持SAE J2716 APR2016 附录A.3中定义的单一安全传感器数据帧格式。在这一格式下,一帧信息包含2个比特的串行信息位SM[1:0],两个比特的状态位S[1:0],一组12比特的数据值CH1[11:0] ,8比特滚动计数器、4比特CH1[11:8] 取反和4比特的CRC校验数据。CH1一直传送12位角度数据; COUNT[7:0] 是8位滚动计数器0~255,计数溢出后回滚到0,如图-29所示; SM[1:0]、S[1:0] 和 CRC与A.1的定义一致。

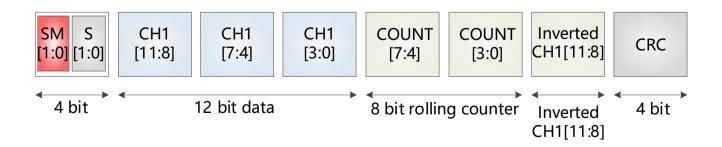
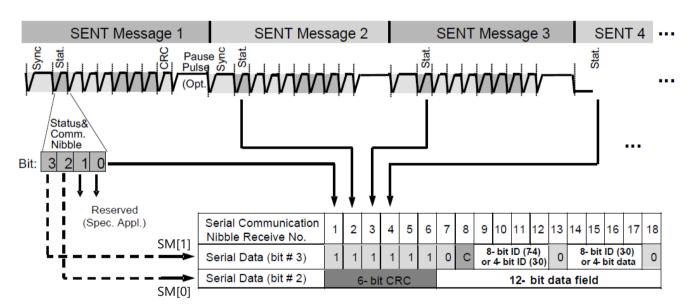


图-29: 单路安全传感器数据帧



7.8.3 增强型串行消息格式

MT6511还可以兼容增强型串行消息格式,这需要一个有更大的数据域和更大的信息ID集的串行通讯通道。如果使用了增强的串行消息格式, 串行数据是在SM[1:0]中传输。 如图-30所示,一个增强型号串行消息包含18个SENT消息帧。串行数据被接收成功指的是所有的18帧数据必须被成功的接收到(没有错误,没有校准脉冲波动,没有数据半字节CRC错误等)。图-30中的表格定义了帧格式,串行消息帧开始于SM[1]中的"01111110 (SENT信息帧的#18和#1~#7),连续6个"1"中的第一个"1"表示串行消息帧的开始。MT6511支持#8对应的C值固定为"0",#13 SENT消息帧中的"0"确保开始数据的唯一性。初始化时,推荐SENT发送SM[1] 位序列'0...01111110'(相当于开始于1个或更多的#18 SENT消息)。一个串行信息帧包含20位有效数据。

One serial message is composed of 18 SENT consecutive error-fee messages.

图-30: 增强型串行消息(18帧SENT数据组成)

串行消息的CRC 校验定义

CRC 数据范围: 帧 1~6的SM[0]

CRC 多项式: X6+X4+X3+1 初始值为′ 010101_B′

汽车级应用的磁性角度传感器芯片

增强的串行消息格式的8位消息ID在表-31中给出。详细信息请参考MT6511有关SENT协议的应用笔记。

表-31: 串行消息8比特ID对应的数据

#	8比特ID	12比特数据	数据来源
1	0x01	诊断错误代码	DIAG_CODE[15:0]
2	0x03	通道1和2传感器类型	SENT_SENSOR_TYPE
3	0x05	制造商代码	SENT_MAN_CODE
4	0x06	SENT标准的版本号	SENT_REV
5	0x07	快速通道: X1	SENT_CHANNEL_X1
6	0x08	快速通道: X2	SENT_CHANNEL_X2
7	0x09	快速通道: Y1	SENT_CHANNEL_Y1
8	0x0A	快速通道: Y2	SENT_CHANNEL_Y2
9	0x23	温度数据	TS_CODE
10	0x29	传感器 ID1	SENT_SENSOR_ID1
11	0x2A	传感器ID2	SENT_SENSOR_ID2
12	0x2B	传感器ID3	SENT_SENSOR_ID3
13	0x2C	传感器ID4	SENT_SENSOR_ID4
14	0x80	磁场强度	CORDIC_RAD
15	0x81	用户ID1	USER_ID[15:4]
16	0x82	用户ID2	USER_ID[3:0]

汽车级应用的磁性角度传感器芯片

7.9 OWI接口

MT6511提供了通过'OUT'管脚的单线通信接口(One-Wire-Interface),用户可以通过OWI接口对MT6511进行读、写寄存器和烧录EEPROM的操作(SPI接口也可以实现同样的操作)。MagnTek提供专用的基于OWI接口的编程器PB600-MT6511和相应上位机软件,以方便用户操作。MT6511在每次上电的过程中,都会检测OWI通信是否被请求,在确认OWI通信未被请求或者OWI通信结束后,'OUT'管脚才会转换为对应的输出模式(模拟输出、PWM和SENT)。

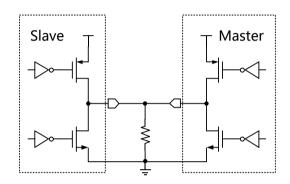


图-31: OWI通信

8. 输出特性

MT6511在出厂默认配置下,实际0~360°的角度位置对应:模拟输出0~100%VDD、PWM输出0~99.9%占空比、SENT输出12比特角度0x000~0xFFF。其中模拟输出、PWM输出和SENT输出的输出传输特性是可以被用户按需要编程的(参见8.1~8.3章节)。但是ABZ输出、UVW输出以及通过SPI接口读到的角度数据始终对应的角度位置0~360°的线性关系,是不可被编程改变的。

8.1 可编程的输出传输特性

MT6511允许用户通过自定义8个任意点(P0~P7)的坐标(角度值、电压值),以及高电平钳位电压(Clamp_high)、低电平钳位电压(Clamp_low)两个钳位电压以及零点(ZERO)和断点(DP)来编程用户需要的输出特性曲线,如图-32所示。所有点的角度都是以零点(ZERO)为基准的,零点(ZERO)由12位的零点寄存确定,如表-32。

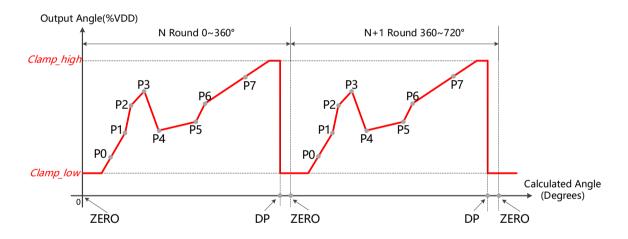


图-32: 输出传递函数(模拟输出、PWM输出、SENT输出)

如图-33所示,断点 (DP) 需要编程到实际0~360°中未使用的区间,断点 (DP) 的具体角度值是以零点 (ZERO) 为基准的。

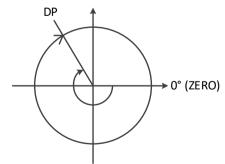


图-33: 断点 (DP) 和零点 (ZERO)

表-32: 零点和断点寄存器

寄存器	值	描述
ZERO[11:0]	12比特	12比特对应0~360°
DP[15:0]	16比特	16比特对应0~360°

8.2 输出曲线任意8点编程

户可以通过操作8点编程相关寄存器(如表-33),来实现各种曲线和达到更好的线性度,如图-34所示。

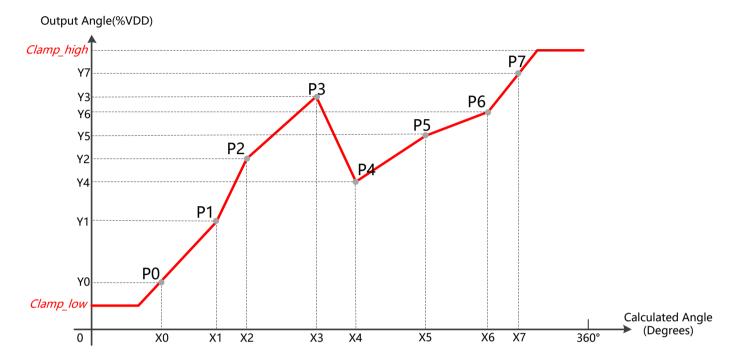


图-34: 输出曲线8点编程(模拟输出、PWM输出、SENT输出)

表-33: 8点编程相关寄存器

寄存器	值	描述
Angle_P0[15:0]~Angle_P7[15:0]	16比特	16比特对应0~360°
Voltage_P0[11:0]~Voltage_P7[11:0]	12比特	12比特对应0~100% VDD

高、低钳位电平是用来限制模拟输出电压范围的两个独立的值。这两个参数都是12比特的数据,电压分辨率可以达到 0.024%VDD。

表-34: 高、低钳位相关寄存器

寄存器	值	描述
Clamp_High[11:0]	12比特	12比特对应0~100% VDD
Clamp_Low[11:0]	12比特	12比特对应0~100% VDD

8.3 17点等分输出曲线编程

MT6511还提供了输出17点等分的编程方式如图-35所示,17点编程可以大大改善输出曲线的线性度。17点等分编程共有16档量程可通过'17P_SPAN'寄存器进行配置(如表-35所示),每一档量程选定后,相应的每两个点之间的跨度ΔR也是唯一确定的。17点等分的第一个起始点角度通过寄存器'17P START'设置。

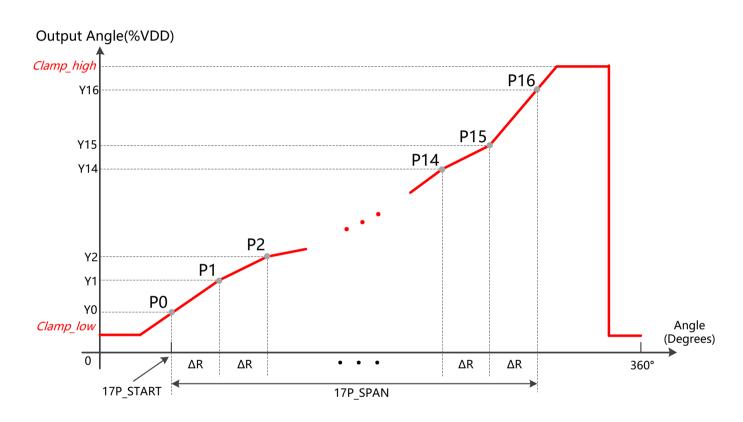


图-35: 17点等分输出曲线编程(模拟输出、PWM输出、SENT输出)

表-35: 17点总量程范围

17P_SPAN	量程(°)	ΔR(°)
0x0	360	22.5
0x1	320	20.0
0x2	288	18.0
0x3	261.8	16.4
0x4	240	15.0
0x5	221.5	13.8
0x6	205.7	12.9
0x7	192	12.0

17P_SPAN	量程(°)	ΔR(°)
0x8	180	11.3
0x9	144	9.0
0xA	120	7.5
0xB	102.9	6.4
0xC	90	5.6
0xD	80	5.0
0xE	72	4.5
0xF	65.5	4.1

汽车级应用的磁性角度传感器芯片

9. 功能安全

9.1 功能安全手册

麦歌恩可根据用户的申请,提供MT6511的功能安全手册。手册内包含了将MT6511作为独立安全元件 (SEooC) 集成到安全兼容应用中的必要信息。主要包括:

- 针对安全元件产品开发生命周期的描述。
- 技术安全概念的摘录。
- 关于元件预期用途的用户假设描述,包括:
 - (1) 对设备安全状态的假设;
 - (2) 容错时间间隔和多点故障检测间隔的假设;
 - (3) 独立组件包括其外部接口的假设;
- 对系统集成商有用的设备级安全分析结果的描述; 硬件结构指标和相关故障发起者的描述。
- 功能安全评估过程的描述和结果; 确认措施清单和独立水平的描述。

9.2 集成的自诊断机制

根据ISO26262 标准,MT6511 芯片内集成了多种自诊断功能(安全机制)。 这些自诊断机制提高了MT6511的可靠性,可以防止在芯片内部或者外部出现某些故障的情况下芯片输出错误的信号。当自诊断机制检测到故障并触发故障模式时,输出模拟量信号对应的输出应被设置为大于等于96%VDD或者小于等于4%VDD (或PWM占空比大于等于96%或小于等于4%)。 另外诊断报警寄存器DIAG_CODE[15:0]的每一个比特代表一种错误条件或者故障模式。

芯片进入故障模式后,在大部分情况下故障条件消失后即可恢复到正常工作状态。但是有些故障比如导入NVM存储数据时的CRC校验失败,只有在芯片重新上电再次导入NVM数据并且CRC校验正确后,MT6511才会退出故障模式。每个故障的自检测功能是否被开启,可以通过寄存器DIAG_EN[15:0]来设置,该寄存器可用来控制故障模式自检测的开启与关闭,其中每一比特与DIAG_CODE[15:0]寄存器的每一比特相对应。

汽车级应用的磁性角度传感器芯片

表-36: 诊断报警寄存器 'DIAG_CODE[15:0]'

比特位序号	功能描述 (逻辑高电平 '1' 表示报警)
0	过压报警
1	欠压报警
2	带隙基准失效
3	LDO失效
4	温度超范围报警
5	时钟振荡器故障报警
6	EEPROM数据载入CRC校验错误
7	弱磁报警
8	强磁报警
9	模拟信号链失效
10	数字信号链失效
11	角加速度过速报警 (芯片来不及计算跟随)
12	NA
13	NA
14	NA
15	NA

表-37: 失效模式及可接收报警的输出模式和恢复方法

失效模式	可接收报警的输出模式	恢复机制
过压报警	Analog/SPI	供电电压恢复到正常区间
欠压报警	Analog/SPI	供电电压恢复到正常区间
带隙基准失效	Analog/PWM/SPI/SENT	失效现象消失
LDO失效	Analog/PWM/SPI/SENT	失效现象消失
温度超范围报警	Analog/PWM/SPI/SENT	失效现象消失
时钟振荡器故障报警	Analog/PWM/SPI/SENT	失效现象消失

汽车级应用的磁性角度传感器芯片

失效模式	可接收报警的输出模式	恢复机制
EEPROM数据载入CRC校验错误	Analog/PWM/SPI/SENT	EEPROM数据重新正确地载入
弱磁报警	Analog/PWM/SPI/SENT	失效现象消失
强磁报警	Analog/PWM/SPI/SENT	失效现象消失
模拟信号链失效	Analog/PWM/SPI/SENT	失效现象消失
数字信号链失效	Analog/PWM/SPI/SENT	失效现象消失
角加速度过速报警 (芯片来不及计算跟随)	Analog/PWM/SPI/SENT	失效现象消失
电源线开路 (注释[4])	Analog/PWM/SENT	失效现象消失
地线开路 (注释[5])	Analog/PWM/SENT	失效现象消失

注释[4]: 电源线开路的情况下,MT6511(Analog/PWM/SENT)可以维持低电平 (<4% VDD) 输出≥10秒钟(外接上拉电阻≥5KΩ的情况下);

注释[5]: 地线开路的情况下,MT6511(Analog/PWM/SENT)可以维持高电平(>96%VDD)输出≥10秒钟(外接下拉电阻≥5KΩ的情况下);

表-38: 失效模式的报警方式

可报警的输出模式	具体描述
Analog (模拟输出)	(1)输出小于等于4%VDD或大于等于96%VDD由寄存'DIAG_DRV_LVL'定义;(2)过压,欠压报警:输出脚的驱动被关闭,输出引脚OUT被内部等效的20KΩ电阻下拉到GND;
PWM	(1)输出帧由12位寄存器 'DIAG_PWM_CODE[11:0]' 定义(2)过压,欠压报警:输出脚的驱动被关闭,输出引脚OUT被内部等效的20KΩ电阻下拉到GND;
SENT	(1) 状态位[0] 置 '1'(2) 过压,欠压报警:输出脚的驱动被关闭,输出引脚OUT被内部等效的20KΩ电阻下拉到GND;
SPI	安全字位[15:12] 的对应值被设置为'0'

10. 推荐应用电路

10.1 模拟量输出模式参考电路

MT6511的模拟量输出模式的典型应用参考电路如图-36所示。请注意,MT6511的模拟输出OUT端最大允许的电容负载为110nf,过大的电容可能会引起输出不稳定。

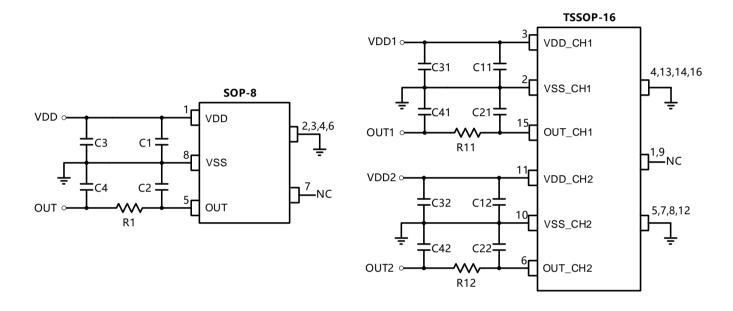


图-36: 模拟量输出参考电路

表-39: 模拟量输出推荐推荐外接电阻、电容参考值

PCB紧凑布局推荐		
C1, C11, C12	100nF	模拟输出模式
C2, C21, C22	100nF	快 水制山快式
		优化EMC性能推荐
C1, C11, C12	100nF	靠近芯片引脚
C2, C21, C22	100nF	靠近芯片引脚
C3, C31, C32 C4, C41, C42	10nF	靠近PCB输出连接端子
R1, R11, R12	51Ω	

10.2 模拟量+开关量输出模式参考电路

MT6511的模拟量(Analog)+开关量(SWO)输出模式的典型应用参考电路如图-37所示。

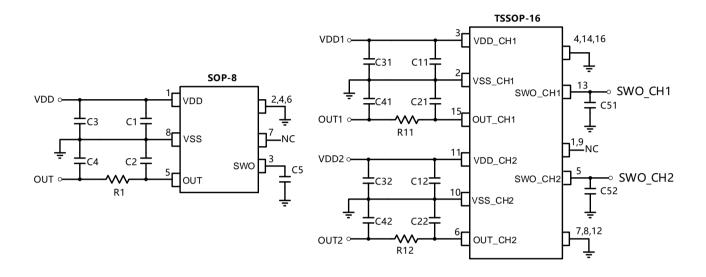


图-37: 模拟输出+开关量输出参考电路

表-40: 模拟量+SWO输出模式推荐外接电阻、电容参考值

PCB紧凑布线推荐			
C1, C11, C12	100nF		
C2, C21, C22	100nF	模拟量+SWO输出模式	
C5, C51, C52	1nF		
		优化EMC性能推荐	
C1, C11, C12	100nF	靠近芯片引脚	
C2, C21, C22	100nF	靠近芯片引脚	
C3, C31, C32 C4, C41, C42	10nF	靠近PCB输出连接端子	
C5, C51, C52	1nF	靠近PCB输出连接端子	
R1, R11, R12	51Ω		

10.3 PWM、SENT输出模式参考电路

MT6511的PWM/SEMT推挽输出模式推荐参考电路如图-38所示。

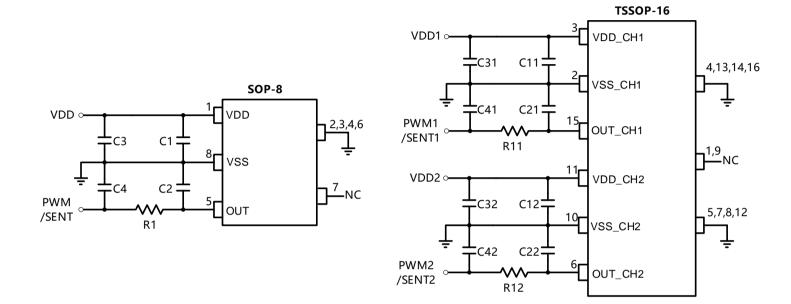


图-38: PWM、SENT推挽输出模式参考电路

表-41: PWM、SENT推挽输出模式推荐外接电阻、电容参考值

PCB紧凑布局推荐		
C1, C11, C12	100nF	
C2, C21, C22	1nF	PWM/SENT推挽输出模式
		优化EMC性能推荐
C1, C11, C12	100nF	靠近芯片引脚
C2, C21, C22	1nF	靠近芯片引脚
C4, C41, C42	10nF	靠近PCB输出连接端子
C5, C51, C52	1nF	靠近PCB输出连接端子
R1, R11, R12	51Ω	

汽车级应用的磁性角度传感器芯片

MT6511的PWM、SENT开漏输出模式推荐参考电路如图-39所示。

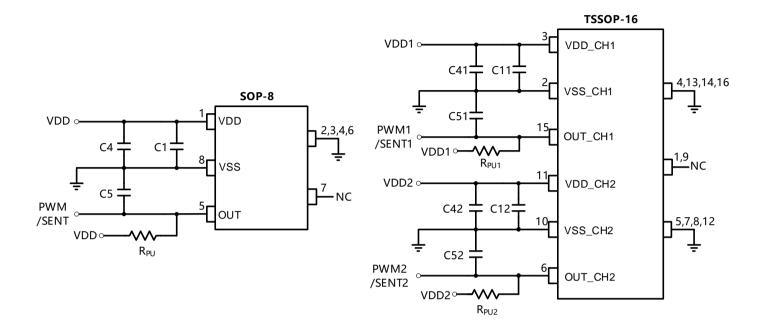


图-39: PWM、SENT开漏输出模式参考电路

表-42: PWM、SENT开漏输出模式推荐外接电阻、电容参考值

PCB紧凑布线推荐			
C1, C11, C12	100nF	PWM、SENT开漏输出模式	
R _{PU} , R _{PU1} , R _{PU2}	1.0kΩ	T WIVI、 SEIWI//I/IRBHIJLIN关工V	
优化EMC性能推荐			
C1, C11, C12	100nF	靠近芯片引脚	
C4, C41, C42	10nF	靠近PCB输出连接端子	
C5, C51, C52	100pF	靠近PCB输出连接端子	
R _{PU} , R _{PU1} , R _{PU2}	1.0kΩ	靠近芯片引脚	

10.4 SPI接口参考电路

MT6511的3线SPI接口推荐参考电路如图-40所示,请确保在上电阶段,MT6511的电源VDD_6511同步或者早于VDD MCU (和MT6511进行SPI通信的MCU的电源)。

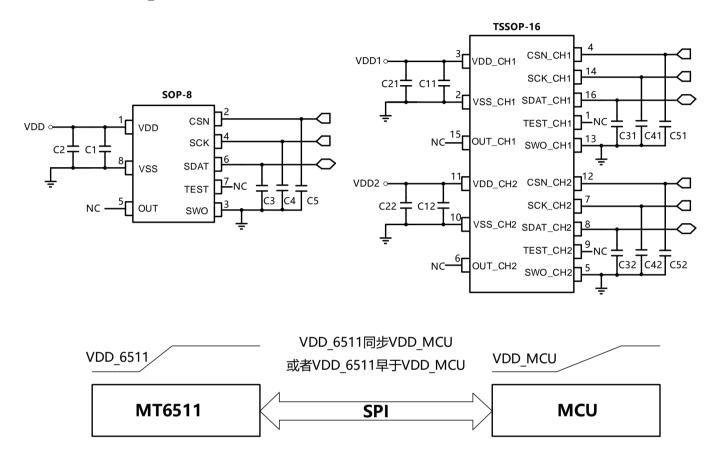


图-40: 3线SPI接口输出参考电路

表-43: 3线SPI输出模式推荐外接电阻、电容参考值

PCB紧凑布线推荐				
C1, C11, C12	100nF	3线SPI模式		
		优化EMC性能推荐		
C1, C11, C12	100nF	靠近芯片引脚		
C2, C21, C22	10nF	靠近PCB输出连接端子		
C3, C31, C32	100pF	靠近PCB输出连接端子		
C4, C41, C42	100pF	靠近PCB输出连接端子		
C5, C51, C52	100pF	靠近PCB输出连接端子		

10.5 ABZ/UVW输出模式参考电路

MT6511的ABZ、UVW输出模式推荐参考电路如图-41所示。

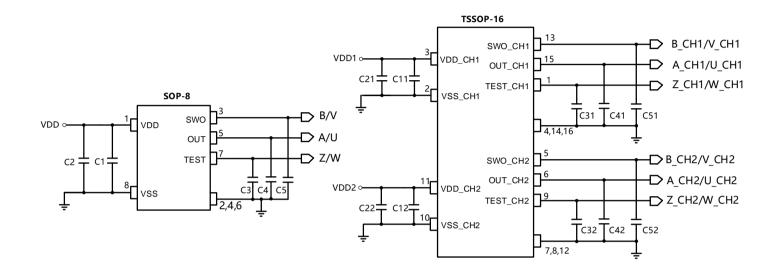


图-41: ABZ、UVW输出参考电路

表-44: ABZ/UVW输出,推荐外接电阻、电容参数

		PCB紧凑布线推荐
C1, C11, C12	100nF	ABZ或者UVW模式
		优化EMC性能推荐
C1, C11, C12	100nF	靠近芯片引脚
C2, C21, C22	10nF	靠近PCB输出连接端子
C3, C31, C32	100pF	靠近PCB输出连接端子
C4, C41, C42	100pF	靠近PCB输出连接端子
C5, C51, C52	100pF	靠近PCB输出连接端子

11. 机械角度和旋转方向定义

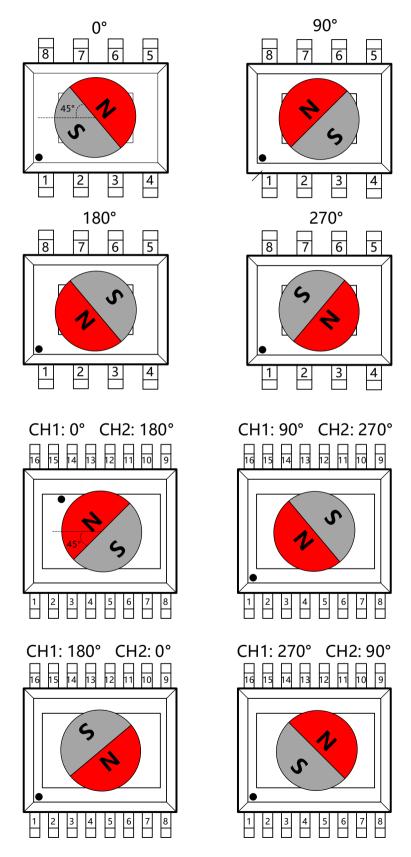
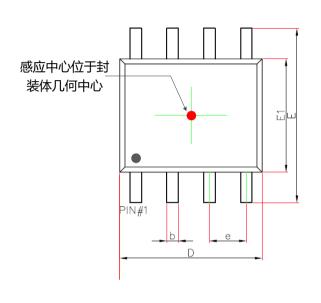
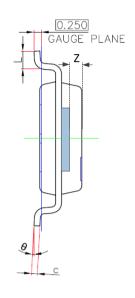
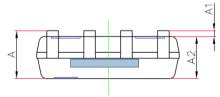


图-42: 磁铁-芯片机械角度位置、方向关系



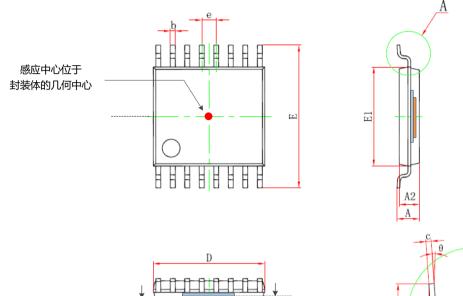


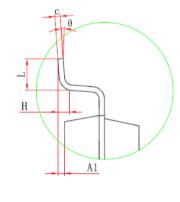

汽车级应用的磁性角度传感器芯片

12. 封装信息

12.1 SOP-8封装

<i>5</i> 5.□	尺寸 (单位: 毫米)		尺寸 (单位: 英寸)		
符号	最小值	最大值	最小值	最大值	
Α	1.450	1.750	0.057	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.55	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
е	1.270(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	
Z	0.380	0.580	0.011	0.023	





汽车级应用的磁性角度传感器芯片

12.2 TSSOP-16封装

符号	尺寸 (单位: 毫米)		尺寸 (单位: 英寸)	
(17 등	最小值	最大值	最小值	最大值
D	4.900	5.100	0.193	0.201
E	6.300	6.500	0.248	0.256
b	0.190	0.270	0.007	0.011
С	0.130	0.180	0.005	0.007
E1	4.300	4.500	0.169	0.177
Α	-	1.100	-	0.043
A 1	0.050	0.150	0.002	0.006
A2	0.850	0.950	0.033	0.037
e	0.65 (BSC)		0.026 (BSC)	
L	0.500	0.700	0.020	0.028
н	0.25 (TYP)		0.01 (TYP)	
θ	0°	8°	0°	8°
Z 1	0.010	0.030	0.0004	0.0012
Z 2	0.021	0.041	0.0008	0.0016

↑Z2

汽车级应用的磁性角度传感器芯片

13. 版权和声明

- 本文的所有文字、图片信息的版权均归属上海麦歌恩微电子股份有限公司所有,未经上海麦歌恩微电子股份有限公司的书面同意和授权,不得复制和发表。
- 2. 上海麦歌恩微电子股份有限公司保留在未经事先通知的情况下修改、更新本说明书的权利。
- 3. 上海麦歌恩微电子股份有限公司的所有产品适用于一般的商业用途,但不适用于任何有特殊失效风险控制的应用场合,包括但不限于: 航空航天设备和系统、核能设备和系统、医疗生命救护设备和系统等。

请通过上海麦歌恩微电子股份有限公司的官方网站www.magntek.com.cn,获取最新的产品说明书。

汽车级应用的磁性角度传感器芯片

14. 版本历史

版本号	日期	内容
0.1	2021.06	初版 (非正式) 发行
0.5	2022.03	量产前版本
1.0	2022.09	正式发行
1.1	2022.10	更新表-6中的产品型号信息